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Abstract Van der Waals equation of state as well as power laws and critical exponent
theories are prototypes to study the cubic shape, asymmetries and “flatness” of the
vapor–liquid equilibrium curves near the critical point. In this work we study two sim-
ilar methods to determine the phase curves in analytical form, which differ from each
other by simplicity of mathematical calculation. We analyze temperature dependence
of the coexistence curves asymptotically close to the vapor–liquid critical point. We
explain the novelty of our method with respect to the standard thermodynamic limit
discussed in the literature. Therefore we show that the shape of the coexistence curves
can strongly influence the accepted value of the critical exponent. The results of theo-
retical studies have been compared with the ones obtained by experimental methods.

Keywords Vapor–liquid critical point · Order parameter · Power laws · Integral
equations · Power series

1 Introduction

An analysis and precise knowledge of the critical region of different substances is
very important issue, from both theoretical and practical point of view. For this reason
prediction of the thermodynamics potential it is essential to use reliable model that,
if possible, generates quite accurate results using simple procedure. This fact leads
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B. Staśkiewicz · W. Okrasiński
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us to search for mathematically simply way, enabling the simplest description of this
complex area, in which it is desired the ability to predict anomalous behavior of
thermodynamic properties.

Critical area and hence the phenomenon occurring in it are extensively discussed
subject of scientific studies, which often refer to advanced methods of functional analy-
sis, quantum mechanics [1–4] or to use only approximate numerical method for the
presented problems [5–12]. On purpose of our research is primarily to demonstrate
that the description of the critical region can be done, from a mathematical point of
view, in a very simple way, using the known laws of physics and performing inter-
mediate mathematical calculations. This paper presents new mathematical approach
to the problem of describing the asymptotic vicinity of the vapor–liquid equilibrium
(VLE) system near the vapor–liquid critical point by determining the vapor–liquid
coexistence curves.

In the general case the key problem which appears in thermodynamic description
of the critical region is based on fact that the thermodynamic model must be quite
accurate when compared with experimental data. In addition it should be mathemati-
cally straightforward, so as to be easy to handle in the calculation of thermodynamic
parameters.

Presented below the results of the analytical calculations, and thus the same math-
ematical description of the vapor–liquid critical region has been imported to solve
system of nonlinear Bernoulli differential equations. These equations were derived
directly from the asymptotic form of the Van der Waals equation of state (VdW EOS)
for real gases by using Taylor’s theorem and deviation parameters [see Eq. (1)] [13].

System of nonlinear differential equations were solved in connection with the clas-
sical Maxwell’s rule and integral equations, thus putting the compatibility of mathe-
matical description with the physical fundamentals of the analyzed phenomenon.

In turn, integrating the methods of power series with the previously mentioned
the Maxwell’s rule and the classical Van der Waals suggestion, allowed us to correct
fractional exponents for one of the thermodynamic potentials. As a result, we obtained
to solve simple third degree polynomial directly from the Cardano formulas and in
consequence we derived a simple analytical form of coexistence curves in cubic shape.

The approach presented in [13] has been refined by: illustrating usefulness of the
asymptotic form of the VdW EOS, which we use it to calculation, both with the value
of critical exponent close this observed experimentally. We develop a new analytical
form of coexistence curves in cubic shape in asymptotic vicinity of the vapor–liquid
critical point. Two equivalent (from mathematical and physical point of view) means
to determine these curves have been presented. Next we have tried to prove that under
certain assumptions, can be almost directly use the VdW theory and VdW EOS, both
confirm and obtain, on the basis of simple mathematical calculations, phase curves
in cubic shape. Cubic shape of the phase curves consistent with experimental results.
This fact to this day leads to conflict between the classical theory and experiment.
What’s more we derived, probably the first, a simple analytical form of cubic shape of
these curves (based on the asymptotic form of the VdW EOS) and we testified their
quite good accuracy by comparison with real data. Furthermore, as shown in Sect. 2,
the calculations were carried out separately for each phase, which in turn verified
the asymmetry of the coexistence curves, not only from the analytical results, but
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also by numerical estimation of the real data [14–17] (compare also Sect. 3.1). In the
end unlike other models, asymptotic form of the VdW EOS is capable of predicting
the flatness of the coexistence curves [18], which often occurs in real fluids of the
Lennard-Jones type [13] (see Sect. 3.1).

Nonanalicity of the thermodynamic potentials used for the calculations have been
avoided by introducing so-called deviation parameters (’distance’ from the critical
point) for each of them, such as pressure, temperature and density [13] (where P is
the pressure and Pc is the critical pressure of the liquid).

p = P

Pc
− 1, t = T

Tc
− 1, ρ̃ = ρ

ρc
− 1 (1)

This procedure resulted the possibility of applying of transformations and mathemat-
ical methods and allows us to analytic form used for the calculation of EOS at the
critical point and its immediate vicinity, leading to the analytical form of the coexis-
tence curves in cubic shape.

As mentioned above in the asymptotic vicinity of the critical point occurs the
problem determining the functional relationships between the thermodynamic poten-
tials, which exhibit nonanalytical behavior at this point. The reason of these behaviors
affect the difficulty of the experimental analysis of the thermodynamic properties. And
hence we correlate approximate description of the critical area of the VLE system with
power laws, critical exponents theory and differential equations theory. This has its
strict justification because it is commonly known that the liquid state is characterized
by anomalous fluctuations of the order parameter near the critical point [19,20]. Some
kind of singularity of the thermodynamic potentials at this point is the immediate cause
of these fluctuations [21].

To this day several methods have been proposed for the quantitative and semi quan-
titative analysis of the behavior of the various pure fluids near the critical point. Some
of them use non-classical value of the critical exponent (close to those observed exper-
imentally) [22], for example the method based on the phase-space cells approximation
introduced by Wilson [1,2], Wilson and Fisher [23], Grover [24], Grover et al. [25],
Salvino and White [26].

In this paper we also extend the Van der Waals [27] suggestion that the coexistence
curve is parabolic in shape and as Levelt Sengers et al. [28] we pointed out that the
shape of the coexistence curve near the critical point is more cubic than parabolic,
for a single component. This fact leads to conflict between the classical theory (see
Table 1) and experiment because in general case the VdW EOS accounts qualitatively
for VLE and the existence of the critical point.

Up to now the question of the shape of the coexistence curve near the critical point
has been much discussed [29–34]. To underline the importance of the coexistence curve
cubic shape Guggenheim [29], Croxton [30], Wyczałkowska et al. [31], Weinberger
and Schneider [32], Widom and Rice [33], Zimm [34] proposed a correlation between
the order parameter of liquid–vapor system with temperature (where ρL , ρV , T, Tc

are the density of the liquid and vapor phase, temperature and critical temperature of
the liquid, respectively), by the equation
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Table 1 Select the power laws, values of critical index and the ways of achieving the critical point for
liquid-saturated vapor system (when t = T

Tc
− 1) [36]

Critical index Power laws Trajectory Experimental results Mean field approaches

α Cv ∼ (±t)−α Critical isochore 0.110 ± 0.003 0

β ρL − ρV ∼ (−t)−β Coexistence curve 0.326 ± 0.002 0.5

γ κT ∼ (±t)−γ Critical isochore 1.239 ± 0.002 1

ρL − ρV = k (Tc − T )1/3 (2)

In our work, as a basic of mathematical calculations there were used asymptotic form
of the VdW EOS and the value of the order parameter, which derives directly from the
power laws where the critical point is achieved asymptotically along the coexistence
curve (see Table 1), i.e. depending [where t is given by (1)]

ρL − ρV = (−t)−β (3)

The exception was the only accepted value of the critical exponent, which is not
selected on the basis of predictions of classical theory but the experiment (see Table 1)
and observation contained in the work of Levelt Sengers [28]. We noting that the value
of the critical exponent β ≈ 0.326 ≈ 0.33 ≈ 1/3 and agrees with the value adopted
by Guggenheim [29–34].

2 Mathematical and physical derivation of the method: the critical region
of the VLE system

It is known that important aspect of the critical region is that most of the anomalies
in the thermodynamic properties can be set in the form of universal power laws with
respect to the critical-point parameters. Critical point of the vapor–liquid system is the
reference point, from which all of the transition properties of such a fluid can be derived.
In addition this is the point, characterized by a fixed temperature, pressure and density,
at which the distinction between the gas and the liquid phase simply disappears. From
both scientific and technological point of view the transition between the vapor and
liquid phases of a pure fluids is one of fundamental in nature.

Around the critical point parameter such as the density of the liquid and vapor
phases obeys universal power laws. This parameter we can easily vary by using, for
example, small changes of temperature (see also Table 1). Because the liquid and
vapor phases coexist with different densities, density of the fluid is inhomogeneous
below the critical point.

Very useful and mathematically straightforward method to determine the VLE
curves in parabolic shape, in the case when the critical point is achieved asymptotically
along the coexistence curve in [13] has been proposed. As a first approximation we
consider well-known and commonly used VdW EOS in the form (after using the
substitution ρ = m/V = 1/V in the place of volume V ):
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P = RTρ

1 − ρb
− aρ2 (4)

where P—pressure, ρ—density, R—universal gas constant, a—represents attraction
arising from dispersion forces, b—accounts for the volume occupied by the molecules.

Next we leading this equation to the simple asymptotic form (see Eq. 4a) by meeting
several general requirements, generally by used to calculate the deviation parameters
(1) and Taylor’s theorem:

p (ρ̃, t) = t (4 + 6ρ̃) + 3ρ̃3 (4a)

Thermodynamic properties of the VLE system and the same the curves ρL =
ρL(T ), ρV = ρV (T ), for any temperature T < Tc can be easily find from the follow-
ing system of equations

P(ρV (T ), T ) = P(ρL(T ), T ), μ(ρV (T ), T ) = μ(ρL(T ), T ) (5)

The condition (5) requires only knowledge of form of an analytical formula expressing
the chemical potential μ = μ(ρ, T ) and the functional dependence P = P(ρ, T )

for the EOS.
We can simply obtain differential form of the coexistence curves near critical region

directly from the system of equations [where ρ̇L and ρ̇V denote the first-order deriv-
atives of ρL(T ) and ρV (T ) with respect to T, see also Eq. (5)]:

ρ̇L = f (ρL , ρV , T ) ρ̇V = f (ρV , ρL , T ) (6)

where function f is of the form

f (ρV , ρL , T )=
(

∂μ
∂T (ρV , T )− ∂μ

∂T (ρL , T )
)

ρV ρL +
(

∂ P
∂T (ρL , T )− ∂ P

∂T (ρV , T )
)
ρV

∂ P
∂ρ

(ρV , T ) (ρV − ρL)

(6a)

This formula is the effect differentiating Eq. (5) with respect to T [35] (where the
chemical potential, μ and the pressure, P are analytical functions of density, ρ and
temperature, T )

Because the right side of the Eq. (6a) is regular, we can find an unique solution in the
form of curves ρL and ρV for given initial conditions ρ0

V = ρV (T0) , ρ0
L = ρL (T0)

and temperature T0 < Tc. In addition assuming that ρV (T ) < ρL(T ) for T < Tc,
the critical point of density can be obtain by ρV (Tc) = ρL(Tc) = ρc (where (ρc, Tc)
determines the so-called critical point and ρc, Tc denote, as above, the critical density
and critical temperature). We must note, that the expressions (6) and (6a) allow for
strictly determination of phase curves in area of their coexistence, but the use of many
simplifications in the calculation [13] leads to obtaining only an approximate formula
of phase curves in cubic shape, near the vapor–liquid critical point.
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As it turns out the determined phase curves can be successfully used to calculate one
of thermodynamics potential and describes, in semi quantitative way, the asymptotic
vicinity of the vapor –liquid critical point.

2.1 Analytical consideration of the method: asymptotic form of the Van der Waals
EOS

Derived in [13] nonlinear differential form of the coexistence densities curves for the
VdW EOS are given by expressions below

˙̃ρV = (ρ̃L − ρ̃V )(
2t − 4ρ̃V + 3

2 ρ̃2
V

) , ˙̃ρL = (ρ̃V − ρ̃L)(
2t − 4ρ̃L + 3

2 ρ̃2
L

) (7)

Using the substitution ρ̃L −ρ̃V = (−t)−1/3 [see also Eq. (2)] we can import a nonlinear
differential equations (7) to linear form

˙̃ρV (t) = 1
3
√−t

(
2t − 4ρ̃V + 3

2 ρ̃2
V

) ˙̃ρL(t) = −1
3
√−t

(
2t − 4ρ̃L + 3

2 ρ̃2
L

) (8)

At the beginning let us consider the differential equation for the saturated vapor density.
The Eq. (8) may be written as (at the assumption that ρ̃V �= 0)

dρ̃V

dt
= 1

3
√−t

(
2t − 4ρ̃V + 3

2 ρ̃2
V

) (9)

what leads to obtaining a simple, Bernoulli differential equation with parameter n =
1/3,

dt

dρ̃V
− (−t)1/3

(
3

2
ρ̃2

V − 4ρ̃V

)
− 2 (−t)4/3 = 0 (10)

Dividing (10) by (−t)1/3 we get

t ′

(−t)1/3 −
(

3

2
ρ̃2

V − 4ρ̃V

)
− 2 (−t) = 0 (11)

Now we use the substitution z = (−t)1−n , where n = 1/3, from this we have

z′ − 4

3
z3/2 = −ρ̃2

V + 8

3
ρ̃V (12)

The question about solve of this equation is answered by use the following, conven-
tional Maxwell’s procedure [36]. It is well-known that the form of the coexistence
curve can be determined, equivalently, from the equality of the chemical potentials
for the coexisting phases, or from Maxwell’s rule. Hence for the two-phase region
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(ρ̃V , ρ̃L ) we can transform (12) into an equivalent integral equation, knowing that in
our model the value of the saturated vapor density in the coexistence region is negative,
given by

z (0) − z (−x) = −1

3
x3 − 4

3
x2 + 4

3

0∫

−x

z3/2(x)dx (13)

where we denoted (for clarity) x = ρ̃V (t) , z (0) = 0, z (x) = (−t)2/3 . From
property of even function z (x) we have that z (−x) = z (x). To obtain a simpler form
(no fractional values generated after integration

∫ 0
−x z3/2(x)dx relative to the saturated

vapor density) solution of Eq. (13) we make a simplification, assuming that the value
of integrate 4/3

∫ 0
−x z3/2 (x) dx is sufficiently small and is equal to zero (because in

two-phase region in this case we have a situation when the density of the vapor phase
asymptotically goes to the critical point, and hence for x → 0 we have also z (x) → 0,
where the point (t, ρ̃) = (0, 0) is set as the critical point). In this case the solution of
Eq. (13) is given by a third degree polynomial

x3 + 4x2 − 3 (−t)2/3 = 0 (14)

Solving this equation we use the Cardano formulas that eventually will get the approx-
imate curve corresponding to the density of the saturated vapor phase in the analyzed
area. Substitution in this equation x = w − 4/3 gives

w3 − 16

3
w − 128

27
− 3 (−t)2/3 = 0 (15)

Setting the delta for this equation

� = 9

4
(−t)4/3 + 64

9
(−t)2/3 (16)

we can finally determine the approximate coexistence curve for the vapor phase, near
the critical point, described by the equation

ρ̃V (t) = 3

√
64

27
+ 3

2
(−t)2/3 − √

� + 3

√
64

27
+ 3

2
(−t)2/3 + √

� − 4

3
, (17)

Similar procedure we apply to the liquid phase, and in this case, after assumption that
ρ̃L �= 0, the Bernoulli differential equation with parameter n = 1/3 is in the form

dt

dρ̃L
+ (−t)1/3

(
3

2
ρ̃2

L − 4ρ̃L

)
+ 2 (−t)4/3 = 0 (18)
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In this case, after dividing (18) by (−t)1/3 and using the substitution z = (−t)1−n for
n = 1/3, we have

z′ − 4

3
z3/2 = ρ̃2

L − 8

3
ρ̃L (19)

As mentioned above, from the conventional Maxwell’s procedure, for the two-phase
region (ρ̃V , ρ̃L), we can transform (19) into equivalent integral equation, knowing that
the value of the liquid density in the coexistence region is positive, given by

z (y) − z (0) = 1

3
y3 − 4

3
y2 − 4

3

y∫

0

z3/2(y)dy (20)

where we denoted (for clarity) y = ρ̃L (t) , z (y) = (−t)2/3 , z (0) = 0. Then (from
the same reasons as above) we assume that the value of integrate 4/3

∫ y
0 z3/2(y)dy is

sufficiently small and is equal to zero (because in two-phase region in this case we
have a situation when the density of the liquid phase asymptotically goes to the critical
point, and hence for y → 0 we have also z (y) → 0).

The same procedure applied now to the liquid phase, as above to the vapor phase,
gives us the final solution in the form

ρ̃L (t) = 3

√
64

27
+ 3

2
(−t)2/3 − √

� + 3

√
64

27
+ 3

2
(−t)2/3 + √

� + 4

3
(21)

where the delta is also given by (16).
Now consider the case when the values of integrals in Eqs. (13) and (20) are not

equal to zero. Taking into account, in this place, the Van der Waals suggestion [27]
that the coexistence curve is parabolic in shape in the region of coexistence of phases
for the temperature–density plane, we can use the following corrections for the vapor
phase describing by Eq. (13)

4

3

0∫

−x

z3/2(x)dx ≈ 4

3

0∫

−x

z2(x)dx (22)

where z2(x) is the reduced temperature along the isochore ρ = ρ̃V and the integral is
taken along the vapor phase, which is negative in this region (because to our assumption
ρV (t) < ρL(t) for T < Tc we have also ρ̃V (t) < 0 and ρ̃L(t) > 0). Acting in this
way we can eliminate the fractional index appearing in Eq. (13).

We deduce from (22) that Eq. (13) corresponds to the form

− (t)2/3 = −1

3
x3 − 4

3
x2 + 4

3

0∫

−x

z2(x)dx
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after integration we have

− (t)2/3 = −1

3
x3 − 4

3
x2 + 4

9
x3 → − (t)2/3 = 1

9
x3 − 4

3
x2

And as mentioned above the solution of this equation is given by a third degree
polynomial

x3 − 12x2 + 9 (−t)2/3 = 0 (23)

Finally it is easy to calculate that

ρ̃V (t) = 3

√
9

2
(−t)2/3 − 64 − √

� + 3

√
9

2
(−t)2/3 − 64 + √

� + 4 (24)

where � = 8192 + 81
4 (−t)4/3 − 576 (−t)2/3

From the same reason for the liquid phase we have the final solution given by (when
we use for calculation condition given by formula (22), where z2(y) is, in this case,
the reduced temperature along the isochore ρ = ρ̃L and the integral is taken along the
liquid phase, which is positive in this region)

ρ̃L (t) = 3

√
64

343
+ 9

14
(−t)2/3 − √

� + 3

√
64

343
+ 9

14
(−t)2/3 + √

� + 4

7
(25)

for � = 81
196 (−t)4/3 + 576

2401 (−t)2/3

Taking into account the assumption ρ̃V (t) < ρ̃L(t) for T < Tc, the approximate
coexistence curve in asymptotic vicinity of the critical point is described by the equa-
tions:

(17)—for the vapor phase, (21)—for the liquid phase (without correction)
(24)—for the vapor phase, (25)—for the liquid phase (with correction).

2.2 Analytical consideration of the method: alternative approach to determine the
phase curves from the asymptotic form of the VdW EOS

In this section we show another mathematical way to solve Bernoulli differential
equations [see Eqs. (12), (19)], from which almost immediately, we can determine
simple analytical form for the phase curves in cubic shape. In this case to solve the
Bernoulli differential equations (12), (19) we use so-called power series method. At
the beginning we rewrite Eq. (12)

z′ − 4

3
z3/2 = −ρ̃2

V + 8

3
ρ̃V

Now to avoid the fractional index occurring in this equation (because we want to apply
the power series method), we use the same as above, mathematical substitution, based
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on the Van der Waals suggestion that the coexistence curve is parabolic in shape in
the region of coexistence of phases for the temperature–density plane. Hence we can
use the following corrections for the vapor phase described by (12) i.e.

4

3
z3/2 ≈ 4

3
z2

Then the expression (12) simplifies to the form

z′ − 4

3
z2 = −ρ̃2

V + 8

3
ρ̃V (26)

And in consequence we can assume that the solutions of the Eq. (26) are given by the
form

z (x) =
∞∑

n=0

an xn

where we use the same notation as above i.e. x = ρ̃V (t) , z (x) = (−t)2/3. Then we
have also

z′ (x) =
∞∑

n=1

nan xn−1

and the left side of Eq. (26) reduces to the simple form of the power series, with the
initial condition z(0) = 0

∞∑
n=1

nan xn−1 − 4

3

( ∞∑
n=0

an xn

)2

= −x2 + 8

3
x (26a)

Let us note that the right side of Eq. (26a) is already in a power series expand some
of parabolic function. Solving it we find the constants an given by a0 = a1 = 0,

a2 = 3/16, a3 = −1/3, an+1 = 0, for n ≥ 3. Finally the approximate solution (26a)
leads to the third degree polynomial given by expression

x3 − 9

16
x2 + 3 (−t)2/3 = 0 (27)

We solve it and find that the approximate coexistence curve, near the critical point, is
described by the equation

ρ̃V (t) = 3

√
−3

2
(−t)2/3 + 27

4096
− √

� + 3

√
−3

2
(−t)2/3 + 27

4096
+ √

� + 3

16
(28)

for � = 193
8388608 + 9

4 (−t)4/3 − 81
4096 (−t)2/3.

123



16 J Math Chem (2014) 52:6–22

Analogous procedure used in relation to the liquid phase described by (19), in this
case, assuming y = ρ̃L (t) , z (y) = (−t)2/3, with the initial condition z(0) = 0, also
leads to obtain the relation

∞∑
n=1

nan yn−1 − 4

3

( ∞∑
n=0

an yn

)2

= y2 − 8

3
y (29)

with the constants, after calculating it, a0 = a1 = 0, a2 = −3/16, a3 = 1/3, an+1 =
0, for n ≥ 3. The approximate solution is, similarly as it was in the case for the
saturated vapor phase, given by the third degree polynomial

y3 − 9

16
y2 − 3 (−t)2/3 = 0 (30)

Solving it we have

ρ̃L (t) = 3

√
3

2
(−t)2/3 + 27

4096
− √

� + 3

√
3

2
(−t)2/3 + 27

4096
+ √

� + 3

16
(31)

with � = 193
8388608 + 9

4 (−t)4/3 + 81
4096 (−t)2/3.

In the end we have second alternative solutions of Eqs. (12), (19) in cubic function
form, described by (28)—for the vapor phase, and (31)—for the liquid phase.

3 Results and discussion

In this section we present the results of fitting our method to the experimental data. We
present determined in Sects. 2.1 and 2.2 phase curves in temperature–density plane. In
simulation as input only the value of the critical temperature fluids analyzed is needed,
as the independent variable, because it is the result of application in calculation the
law of corresponding states (for more details see also [13]).

To test the validity of Eqs. (24), (25), (28), (31) for pρt data in the close vicinity
of the critical point, we used experimental data for fluids of different kinds, such as
diatomic and polyatomic molecules i.e. hydrogen (H2), oxygen (O2), nitrogen (N2),
ammonia (NH3) and noble gas—xenon (Xe) [37]. The most important thermodynamic
parameters of these fluids are given in Table 2, where T, Tc denote the temperature

Table 2 Details on the phase equilibrium data for the systems considered in this article

Molecule Tc (K) ρc (kg m−3) Range of data

T (K) ρL (kg m−3) ρV (kg m−3)

O2 154.581 436.10 154.20–154.581 436.10–547.04 326.80–436.10

H2 33.145 31.263 32.80–33.145 31.263–43.104 20.009–31. 263

N2 126.192 313.30 125.80–126.192 313.30–400.79 228.20–313.30

NH3 405.40 225.00 405.10–405.40 225.00–274.01 185.75–225.00

Xe 289.733 1100.00 289.40–289.733 1100.00–1319.5 909.41–1100.00
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Table 3 Percentage values of rms errors of the VLE curve and critical densities between experimental,
given by Eqs. (24)–(25) and (28)–(31) and equations in traditional parabolic shape (taken from [13]) data
for test substances

rms % Calc. from Eqs. (24–25) Calc. from Eqs. (28–31) Contained in [13]

ρL ρV ρc ρL ρV ρc ρL ρV ρc

O2 4.61 4.28 0.021 4.57 2.97 0.028 5.07 4.92 0.29

H2 8.78 9.48 0.023 2.89 2.65 0.031 3.23 3.25 0.43

NH3 5.88 5.44 0.029 5.55 2.23 0.054 6.01 3.28 1.002

Xe 3.08 5.03 0.027 4.59 2.24 0.087 3.34 5.14 0.028

N2 9.22 5.94 0.0044 1.80 4.22 0.023 10.52 7.28 0.95

and the critical temperature (expressed in Kelvin), P, Pc denote the pressure and the
critical pressure (expressed in Mega Pascal), ρc, ρL , ρV denote the density–critical
liquid and vapor, respectively (expressed in kilogram per cubic meter). The values of
the critical parameters for all of tested substances were taken from [37]. The reason
of choosing these data to analysis as well as the way of fitting calculated phase curves
to real data is based on work [13].

The value of the asymptotic neighborhood of the liquid–vapor critical point was
taken based on the expression of the scaled temperature-parameter |t |, which around
the critical point not exceeds the value of ∼10−n . We assume that |t | ∼ k × (10−4 ÷
10−2) (where k ∈ [1, 9]) and corresponds to the temperature range of the interval
[Tc − 0.3 K, Tc], where Tc is the critical temperature of the test substances.

The accuracy of the method described here was checked by comparing calculated
values with the results of experimental data, giving in all the comparisons percentage
root-mean-square deviations (% rms) (see Table 3)

% rms =
√√√√ 1

N

[
N∑

i=1

(
Xexp − Xcalc

Xexp

)2
]

where Xexp are experimental values for the thermodynamic property of interest, Xcalc

are fitted values for the same property, and N is the number of data.
Table 3 lists the root-mean-square error deviations in density for the mentioned

above pρt data sets. We must note in this place, that comparison of the several data
sets for selected fluids can be made only for data in the same ranges of temperatures
(see adopted temperature range for analysis in Table 2).

3.1 Analysis of the behavior of the experimental data near the vapor–liquid critical
point-discussion of results from numerical estimations

Semi qualitative description of the critical area and the prediction of the coexistence
densities curves near the vapor–liquid critical point is a severe test for determined from
calculation phase curves given by (24), (25), (28), (31). Is that because the nonanalytic
nature of the asymptotic vicinity of the critical region means that most of the EOS can
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be expected to fail. We tried to avoid this conflict by applying to the calculation of
so-called deviation parameters [see Eq. (1)] and order parameter for the VLE system
[see Eq. (3) in Sect. 1].

In Fig. 1 we see that critical region of the coexistence curves is better reflected
by phase curves determined from second method [see solid lines determined from
Eqs. (28), (31)]. But for some fluids both methods gave very good, and qualitatively
indistinguishable, results (compare Fig. 1(a, c, d) of liquid phase for xenon, oxygen
and ammonia with Table 3). In addition the data obtained from second method for

Fig. 1 Vapor–liquid critical point of the VLE curve determined from Eqs. (24)–(25) and (28)–(31) (where
ρ = ρ̃ = ρ/ρc − 1, t = T/Tc − 1) and its comparison to experimental data taken from [37] (experimental
data represents black squares—liquid phase, black circles—vapor phase, lines corresponds to data estimated
by a theoretical approach for vapor phase from Eqs. (24), (28)—wine dashed line and solid green line, for
liquid phase from Eqs. (25), (31)—red dashed line and solid blue line, respectively), a for oxygen, b for
hydrogen, c for ammonia, d for xenon, e for nitrogen. The phase curves in parabolic shape is added for
comparison (dark grey dotted line) (Color figure online)
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vapor phase showing the tendency to rapid, local anomalies (see solid green line for
nitrogen, xenon and oxygen on Fig. 1a, d, e), which confirm the nonanalytic nature
of the critical region and the same problem determining the functional relationships
for analyzed thermodynamic potential-density. Obviously, the above results are a con-
sequence of the fact, that we excluded in our method the effect of molecular shape,
other complicating factors, the influence of gravitational effects or the influence of
dipole interactions. Hence some of these diatomic and polyatomic structures to pose
a greater challenge for obtained from calculation phase curves and the outcomes are
not quantitatively accurate. Results obtained from the first method characterize reg-
ularity and no significant deviations in compared with experimental data (especially
for the both phase of oxygen, ammonia and hydrogen on Fig. 1a–c—see also similar
percentage values of rms error in Table 3).

Another important distinction of the methods presented here is clearly visible “flat-
tening” of the determined cubic phase curves near the critical point, which is typical
for experimental systems and which is not include in the result based on the traditional
parabolic form of the coexistence curve near the critical point suggested by VdW. The
results obtained for example for ammonia, hydrogen and oxygen corroborate the cubic
shape of the phase curves and have been compared with the parabolic shape of these
curves [contrast dotted lines corresponding to the phase curves in parabolic shape [13]
with dashed lines determined from Eqs. (24), (25) on Fig. 1a–c] as also prove that
under certain assumptions, can be almost directly use the VdW EOS to obtain coex-
istence curves cubic shape, consistent with experiment (notice also higher percentage
values of rms error in Table 3 for curves determined from equations in parabolic shape
contained in [13]). Only in the case of xenon (Fig. 1d) these shapes of phase curves
are qualitatively indistinguishable. Compare also the method presented by us to the
results obtained by Weinberger [38].

One observes in Table 3 that, for analyzed fluids, first method after some mathe-
matical transformations, gives very good approximation of real values of the critical
density with value obtained from the method described here. In turn second method
gives somewhat poorer values of the critical density in contrast to the real data (com-
pare with each other solid lines on Fig. 1a–d) for hydrogen, nitrogen, ammonia or
xenon with values of rms error in Table 3).

In Fig. 2a, we see that most of the results obtained from Eqs. (24) and (31) overes-
timated the liquid or vapor density of oxygen. Similar conclusion arises from Fig. 2e,
where we notice that the results obtained from second method [i.e. from Eqs. (28)
and (31)] overestimated the liquid and vapor density and underestimated densities
obtained by first way [Eqs. (24) and (25)]. In turn in Fig. 2c one can observe that at
high temperatures (lower values of parameter t), closer to the critical point, second way
overestimated and first way underestimated the vapor density. In addition in Fig. 2a, b,
e almost 100 % agreement (a zero line representing appropriate correlations by using
the equations of Sect. 2, in all deviation plots) between selected values for the liquid
and vapor density, far from the vicinity of the critical point, can be observed.

In sum, Fig. 2a–e show that the present models performed in a similar way, inde-
pendently of the fluids being considered. For some substances the largest difference
between the data is clear visible near the critical point [more than −14 % for the liq-
uid density of nitrogen determined from Eq. (25) and more than −17 % for the vapor
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Fig. 2 Percentage density deviation (where ρ = ρ̃ = ρ/ρc − 1, t = T/Tc − 1) of the experimental pρt
data near the vapor–liquid critical point from values calculated from Eqs. (24)–(25) and (28)–(31) [blue
up triangle and black star corresponds to liquid density determined from Eqs. (25), (31), green square and
red circle corresponds to vapor density determined from Eqs. (24), (28)], a for oxygen, b for hydrogen,
c for ammonia, d for xenon, e for nitrogen. Black horizontal zero line correspond to 100 % accuracy
between the data. All data with deviations of more than ±5 % are plotted on the limit of the deviation scale
(Color figure online)

density of hydrogen determined from Eq. (24)—points plotted on the limit of the devi-
ation scale of Fig. 2b, e]. While the values of largest percentage deviation for the result
obtained from Eqs. (28) and (31), at the critical point, amounted to just over −12 %
for the liquid phase of xenon and almost 12 % for the vapor phase of nitrogen-points
plotted on the limit of the deviation scale of Fig. 2(d, e).

Based on ways derived from this work, we see that the percentage value of rms
error is lower when we use to analyze the second method and significantly increased,
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for some fluids, for the first method. Therefore, the error is strictly dependent on the
applied method of calculation. Of course these values are radically different from the
results obtained with accurate, multi parameter EOS. Other than the goal of this article
was the straightforwardness of the model presented, but despite this fact the results
presented here are, for some fluids, much better than the results obtained for example
by Sadus [39] (especially for both phases of xenon and hydrogen, where author of this
work used in analysis temperature range nearest to those chosen in this article).

We expect such a large distinction between the results obtained by adopting the
VdW EOS in calculation than these contained in works [40,41]. It’s obvious that
the VdW EOS much better reflects the nature of the theoretical calculations than
practical applications. Nevertheless we wanted show in this article that VdW EOS can
be developed (at some assumptions) coexistence curves cubic shape and proved that
VdW theory can also confirm not only the cubic shape but also predict the flatness of
these curves. Moreover the impact on such divergent outcomes in comparison with
other works, could also affect the critical exponent assumed value. This value, in real,
for the selected fluids may slightly more than that adopted by us (compare for example
experimental value of the critical exponent of oxygen [42] or xenon [43]).

4 Summary and conclusions

In this paper we have proposed a mathematical method for description the critical
region of the VLE system. By using derived in [13] differential form of the coexis-
tence densities curves and critical exponent theory we imported a nonlinear differential
equations to linear form. We found their solution in a form of a cubic function, consis-
tent with the considerations proposed by Levelt Sengers [28] and Guggenheim [29],
Croxton [30], Wyczałkowska et al. [31], Weinberger and Schneider [32], Widom and
Rice [33], Zimm [34]. Calculated in this way phase curves in cubic shape could be
directly use for the semi qualitative description of the critical area (the critical value
of one of the thermodynamic potential, density, is determined with accuracy do not
exceeds of a few percent for both phases—liquid and vapor). The error, in general, was
smaller for vapor density than liquid density. What is more we can estimate critical
density with deviation not less than 0.0044 % for selected fluids (compare also this
result with results contained in work of Nowak et al. [41]).

The generally good results obtained from Eqs. (24), (25), (28) and (31), indicate
that the asymptotic VdW formula can be used as the basic for simple coexistence
curves development. Thereby we have showed that under certain assumptions the
VdW EOS as well confirm, on the basis of simple mathematical calculations, of cubic
shape coexistence curve, consistent with experimental results, which to this day leads
to conflict between the classical theory and experiment.
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